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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

MultiplY By To Obtain

degrees (angle) 0.01745329 radians

cycles per second 1.0 hertz

cycles per second 6.28318531 radians per

second

feet 0.3048 meters

inches 2.54 centimeters

acceleration of 980.665 centimeters/
gravity (standard) second/second

32.174 feet/second/

second
386.086 inches/second/

second

gal 1.0 centimeters/
second/second

feet/second/second 30.4838 centimeters/
second/second

pounds 4.4822 newtons

tons 8.896 kilonewtons
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INTRODUCTION TO THE COMPUTATION OF RESPONSE SPECTRUM

FOR EARTHQUAKE WADING

PART I: INTRODUCTION

1. This paper presents an introduction to the computation of a response

spectrum for earthquake loading. A response spectrum is a graphical relation-

ship of maximum values of acceleration, velocity, and/or displacement response

of an infinite series of elastic single degree of freedom (SDOF) systems

subjected to a time dependent excitation. To accomplish this task, the formu-

lation and solution of the equation of motion for a damped SDOF system

subjected to dynamic excitation is reviewed prior to discussion of the

response spectrum.

2. Examples of idealized SDOF systems are shown in Figure 1. The

dynamic excitation may be due to the forcing function P(t) (Figure lc) acting

on the mass or to ground shaking, typically expressed in terms of a ground

acceleration time history, as shown in Figure 2. The dynamic response of

damped SDOF systems is described by the variations of displacement, velocity,

and acceleration of the mass with time. A plot of the maximum values of

acceleration, velocity, and/or displacement of an infinite series of SDOF sys-

tems versus undamped natural period is called a response spectrum.

3. The response spectrum is the cornerstone of modern earthquake engi-

neering and structural dynamics. It is used to calculate the dynamic response

of multi-degree of freedom (MDOF) semidiscrete structural models of buildings

and hydraulic structures (i.e. dams, locks, and intake towers) as well as for

the evaluation of frequency content of recorded accelerograms. The frequency

content of accelerograms is of importance for selecting the ground motion(s)

to be used as the forcing functions in the dynamic analysis.

4. The damped SDOF system and the dynamic equilibrium equation for the

system are introduced in Part II. The derivation of the equation of motion

for a damped SDOF system subjected to a time dependent force history is

described in Part III. Part IV derives the equation of motion for the case of

a damped SDOF system subjected to earthquake shaking. This part also

describes how the earthquake shaking problem may be reformulated as an equiva-

lent force history problem.
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5. The fundamentals of the solution of the equation of motion using

numerical procedures are introduced in Part V. Because of the irregular

nature of the acceleration time histories that have been recorded during

earthquakes, numerical methods are used to compute the response of SDOF sys-

tems for developing response spectra.

6. Part VI describes the construction of response spectra using the

accelerations, velocities, and displacements obtained from the numerical

integration of the equations of motion for an infinite series of SDOF systems

subjected to earthquake shaking. The terms associated with response spectra

are also defined in Part VI.
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PART II: THE DYNAMIC EQUILIBRIUM EQUATION FOR A DAMPED SDOF SYSTEM

7. A damped SDOF system consists of a rigid mass m, a linear spring of

stiffness k, and a viscous damper with damping coefficient c, as shown in Fig-

ure 2. The viscous damper represents the energy absorbing component of the

system. Each rigid mass is constrained to move in the horizontal x direction.

The SDOF system in Figure 2a is subjected to a time dependent horizontal force

history P(t), while the SDOF system in Figure 2b is shaken by a time dependent

horizontal ground acceleration, kSround(t). The double overdot represents the

second derivative of displacement x with respect to time. The dynamic

response of either system at any time t is governed by the relationship

where

ktotai(t) - the acceleration of the mass m.

8. In earthquake engineering problems, the displacements, velocities

and accelerations of the rigid mass differ from those of the ground (Fig-

ure 2b). It is convenient to describe the motion of the rigid mass in terms

of the relative displacement of the mass with respect to the ground as

x(t) = Xtora1 (t) - Xgroun d(t) (2)

where

x(t) - the relative displacement

Xtotal(t) - the displacement of the mass from its at-rest position

Xgroud(t) - the displacement of the ground

The relative velocity and relative acceleration of the mass m at time t are

obtained by differentiation of Equation 2

*(t) = krotal 0 - kground(t) (3)

and

2( t) = ;ora 0 - kground( t) (4)

The solutions to the two dynamic problems shown in Figure 2 are described in

Part 1II for an applied dynamic force and in part IV for an earthquake

excitation.
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PART III: ORDINARY DIFFERENTIAL EQUATION FOR A DAMPED SDOF SYSTEM -
FORCED VIBRATIONS

9. This part describes the derivation of the ordinary differential

equation of second order that governs the dynamic response of the damped SDOF

system shown in Figure 3 to a time dependent external force P(t). This simple

mechanical system serves as an introduction to the fundamentals of the

dynamics of a SDOF system and as background information for the dynamic prob-

lem involving a SDOF system undergoing a time dependent ground acceleration as

described in Part IV.

10. Assume that at time t, P(t) acts in the positive x direction (to

the right) and that the acceleration, velocity, and displacement of the mass

are positive. For this problem, the ground is at-rest (i.e. xSroud - 0),

therefore xtotai(t) is equal to x(t). The movement of the mass from its at-

rest position to the right stretches the spring, resulting in a restoring

force fk(t). For a linear spring

fk(t) = k x(t) (5)

where

k - the spring stiffness

x(t) - the displacement of the mass at time .t

Similarly, the restoring force f.(t) contributed by the viscous damper at time

t is given by

fW(t) = c'(t) (6)

where

c - the damping coefficient

x(t) - the velocity of the mass at time t

Both fk(t) and fc(t) act in the negative x direction (to the left) at time t,

tending to restore the mass to its at-rest position (refer to Figure 3). The

sum of forces acting on the mass, the left-hand-side of Equation 1, is

E F(t) = P(t) - fk(t) - fc,(t) (7)

Substituting Equations 5, 6, and 7 into Equation 1 with k(t) - ktotai(t) and

rearranging results in

11
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Figure 3. Forces acting on a linear SDOF system at time t, external
force P(t) applied

mr(t) + cx*(t) + k x(t) = P(t) (8)

The first term in Equation 8 represents the inertial force fi(t), associated

with the mass m undergoing an acceleration *(t), which acts opposite to the

direction of the acceleration of the mass m (refer to Figure 4).

Free Vibration

11. Free vibration results from the application of an initial displace-

ment and/or velocity with no external forcing function acting on the system

(P(t) - 0).
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Undamped Free Vibration

12. The equation of motion (Equation 8) for an undamped system (c - 0)

in free vibration is

m f(t) + kx(t) = 0 (9)

and its solution is

x(t) = X Cos (at + sin wt (10)

where

x. - the initial displacement

- the initial velocity
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and

where

w - constant circular frequency (rad/sec).

Equation 10 is obtained using standard solution procedures for linear differ-

ential equations, such as the method of undetermined coefficients (Sec-

tion 2.12 in Kreyszig 1972). The motion described by Equation 10 and shown in

Figure 5a is cyclic with a constant maximum amplitude

Ix(t)I X2 x [.] 
(12)

and constant circular frequency w. The cyclic nature of vibration may also be

expressed in terms of the natural period of vibration , T (sec), of the

undamped SDOF system as

T = 2 7c (13)

or the natural cyclic frequency of vibration f (cycles/sec or Hz) where

f = I _ W (14)
T 2x

13. Figure 6 shows the computed response of a SDOF system with k -

1 N/m and mass m - 1 kg, subjected to an initial displacement x. - 1 cm (xo -

0).* The circular frequency is equal to I radian/sec (by equation 11) and the

undamped natural period of vibration is equal to 2 w seconds. Plots of the

displacement, velocity and acceleration of the mass for the first cycle of

harmonic response are shown in Figure 6, as well as the variation with time of

the spring force and inertial force acting on the rigid mass. Note that the

inertial force acts opposite to the direction of the acceleration vector for

the rigid mass.

* One newton, N, is the force which gives an acceleration of 1 m/sec2 to a

mass of 1 kg.
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Damped Free Vibration

14. The equation of motion for damped free vibration may be written as

1(t) + 2 P w *(t) + W2 x(t) = 0 (15)

where

= C (16)
2 m

Equation 15 was derived from Equation 8 by (1) dividing each term by the mass

m, (2) introducing the constant P for the damping force term, and (3) P(t) set

equal to zero. The solution of Equation 15 is, for < 1,

X(t) = e+'o x0 COB WDt + + P ] sin wDt} (17)

The motion described by Equation 17 for 6 < 1, shown in Figure 5b, is periodic

with an exponentially decaying amplitude and damped circular frequency

= (18)

or period

TD T (19)

where w and T are the circular frequency and period of the undamped system,

respectively.

15. When I - the period of the damped system becomes infinite indi-

cating that the motion is no longer cyclic but after an initial maximum dis-

placement, decays exponentially without subsequent reversal of direction. A

system with I - or with damping

c = ccriti, = 2 m 0 (20)

is said to be "critically" damped. Hence

17



C C (21)
Ccritical 2 m w

is called the "damping ratio" or the "fraction of critical damping."

Typically for structures P is less than 0.1 and for material damping in soils

is less than 0.25. 6 may also be expressed as percentage. For typical struc-

tural systems the periods (or frequency) of the damped and undamped systems

are approximately equal, i.e.

T a Tb (22)

Forced Vibration with Dynamic Force Applied to Mass

16. The equation of motion (Equation 8) for the SDOF system (Figure 3)

may be written as

R(t) + 2 0 w *(t) + W2 x(t) - P(t) (23)
m

In general there are three approaches to the solution of Equation 23: closed

form solutions, Duhamel's Integral, and numerical methods.

Closed Form Solutions

17. For a simple harmonic force history, such as P(t) - Constant sin

[wdriv. t] in Equations 8 and 23, closed form solutions are available in numer-

ous textbooks on both mechanical vibrations and structural dynamics. This

procedure is not practical for earthquake engineering problems involving

irregular force time histories.

Duhamel's Integral

18. A second procedure used to solve for the dynamic response of a SDOF

system involves the representation of the load time history P(t) as a series

18



of impulse loadings P(r) that are applied to the SDOF system for infinitesimal

time intervals dr, as shown in Figure 7.

PX
IMPLSE -P(Ti-d7

time

dr TIME INTERVAL (t. dr )

Figure 7. Load time history P(r) as impulse loading to undamped SDOF
system

19. Figures 8a through 8c outline the derivation of the incremental

displacement dx of an undamped SDOF system at time t to a single force pulse

P(r).dr. Figure 8d gives the resulting integral solution, known as the

Duhamel's integral, for the displacement of the undamped SDOF system at time t

to the s':ccession of force pulses applied between time - 0 and time - t.

20. Duhamel's integral for a damped SDOF system is

x(t) p() e-p(et) sin 1(t - 'r)] dr (24)

where

- the damped circular frequency of vibration (Equation 18),

w - the undamped circular frequency of vibration (Equation 11)

- the fraction of critical damping (Equation 21).

21. For a select few load time histories P(t), the integral may be

evaluated directly. Irregular force time histories require numerical solu-

tions to be used to evaluate Duhamel's integral. These procedures are

described in numerous textbooks on structural dynamics.

Numerical Methods

22. For most earthquake engineering problems, numerical methods are

used to solve a form of Equation 8 or Equation 23 due to the irregular form of

force time histories. Numerical methods will be discussed in Part V.
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Introducing dex from (a) into ;, of (b), the incremental displacement is given by

dxt) - - I P()d ] sn [ Q, --

(c) Incremental displacement at time t due to a single pulse

at time T

x(t) • dx(t) d T

Xt f P(T) sin [t - l" dT

(d) Duhamel's integral

Figure 8. (Continued).
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PART IV: ORDINARY DIFFERENTIAL EQUATION FOR A DAMPED SDOF SYSTEM -

GROUND ACCELERATION

23. This part describes the derivation of the ordinary differential

equation of second order that governs the dynamic response of the damped SDOF

system shown in Figure 2b shaken by a horizontal ground acceleration

kSround(t). gr8 omnd varies in both magnitude and direction with time. Assume

that at time t, kground(t) is positive (to the right) and the acceleration,

velocity, and displacement of the mass are positive. The restoring forces of

the spring and dashpot shown in Figure 9 are given by Equations 5 and 6,

respectively. Combination of Equation 1

F(t) = mffot (t) (1)

Equation 5

f4(t) = k x (t) (5)

and Equation 6

f4(t) = ck(t) (6)

result in

m fko, 2 (t) + cx(t) + kx(t) = 0 (25)

where x and x are relative velocity and displacement of the mass (Equations 2

and 3) valid at any time t. The first term in Equation 19 represents the

inertial force fi, associated with the mass m undergoing a total acceleration

ktot0 8 (t). This force vector acts opposite to the direction of the total

acceleration vector of the mass m, as shown in Figure 9. Substituting Equa-

tion 4 into Equation 25 for ktotal results in the expression

m k(t) + ck (t) + k x= m ground ( t) (26)

or

1(t) + 2 P () (t) + W)2 x(t) = - kground(t) (27)
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Figure 9. Forces acting on an SDOF system at time t,
ground acceleration iground

wher e

w- the undamped circular frequency (Equation 11)

6 - the damping ratio (Equation 21)

The terms associated with the relative movement of the mass are collected on

the left-hand-side of the equal sign. Either differential equation
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(Equation 25 or 26) describes the dynamic response of a damped SDOF system

shaken by a horizontal ground acceleration Xground.

Eguivalent SDOF Problems

24. Comparison of Equation 26 with Equation 8 shows that the relation-

ships for the two SDOF systems shown in Figure 2 differ by the term on the

right-hand-side of the equal sign (the force history). Thus, the problem of a

damped SDOF system shaken by a time varying ground acceleration is equivalent

to the problem of a damped SDOF system resting on a fixed base and subjected

to a time dependent force P(t) of magnitude - m-X round, as shown in Figure 10.

C MASS, m - AAS mI

K -4 P(t) --m~gr (t)

------0l gr FIXED BASE

GROUND ACCELERATION

X gr ind AA!N tim e

STEP 1, SOLVE

m;(t) * ci(t)* kx(t) - -m ground(t)

STEP 2, SOLVE

Xtotol(t) - x(t) Xground(t)

Figure 10. Equivalent dynamic SDOF system problems

Solution of the Equation of Motion

25. The total dynamic response of the SDOF system problem is computed

in two steps. Step 1 solves for the relative response of the damped SDOF

system as governed by the ordinary differential Equation 27, and in Step 2,

the total response is equal to the sum of the relative response (from step 1)

plus the motion of the ground.
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Closed Form Solutions

26. For simple harmonic ground accelerations (e.g. kground = Con-

stant-sin [Udriv,'t] ) closed form solutions to Equation 27 are available in

numerous textbooks on both mechanical vibrations and structural dynamics.

This procedure is impractical for earthquake engineering problems due to the

irregular nature of ground acceleration time histories.

Duhamel's Integral

27. A second procedure used to solve for the relative displacement of

the SDOF system involves the representation of the load time history P(t) - -

Mxground(t) as a series of impulse loadings P(r) applied to the SDOF system

for infinitesimal time intervals dr (Figure 7). By introducing P(t) - -

mXground(t) into Equation 24, Duhamel's integral for a damped SDOF system is

x(t) - f Xground(?) e - O"(t - ' ) sin [IGD(t - )] d-r (28)WD 0

where

wD = the damped angular frequency of vibration (Equation 18)

- the undamped angular frequency of vibration (Equation 11)

= the fraction of critical damping (Equation 16)

The irregular forms of acceleration time histories require numerical solutions

to be used to evaluate Duhamel's integral.

Numerical Methods

28. In usual applications to earthquake engineering problems, numerical

methods are used to solve Equation 27 or Equation 28 for the relative dis-

placement of the SDOF mass because of the irregular nature of ground accelera-

tion time histories (discussed in Part V).
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PART V: SOLUTION OF DYNAMIC EQUILIBRIUM EQUATIONS FOR A DAMPED
SDOF SYSTEM USING NUMERICAL METHODS

29. This part introduces the fundamentals of numerical methods used to

solve for the accelerations, velocities, and displacements of a damped SDOF

system due to a time dependent loading. In general, there are two categories

of numerical methods used for solving the dynamic equilibrium equation:

direct integration methods and frequency-domain methods. This part discusses

direct integration methods only. The reader is referred to books on struc-

tural dynamics for a description of frequency-domain methods.

Direct Integration Methods

30. Direct integration methods are used to solve for the response of

the SDOF (and MDOF semidiscrete structural models) by direct integration of

the dynamic equilibrium equations at closely spaced, discrete time intervals

throughout the time of shaking using a numerical step-by-step procedure of

analysis. The term "direct" means that prior to numerical integration, there

is no transformation of the equations into a different form, as is done in a

frequency-domain analysis. Table 1 lists some of the step-by-step algorithms

used in structural dynamics for both SDOF systems and MDOF semidiscrete struc-

tural models and in the characterization of ground motions for earthquake

engineering problems.

31. Direct integration methods are based on two concepts. First, the

equation of motion (Equation 27) is satisfied at discrete points in time (i.e.

t, t + At, ...) during earthquake shaking, and second, the forms of the varia-

tion in displacements, velocities, and accelerations within each time inter-

val, At, are assumed. Direct integration time methods are classified as

either explicit integration methods or implicit integration methods. The

explicit integration method solves for the unknown values of x t + At, xt + At,

and Xt + At at each new time (t + At) using the equation of motion at time t,

with the known values for xt, it, and Xt at time t as the initial conditions.

The implicit integration method solves for the unknown values of xt + At, xt + at

and it + At at each new time (t + At) using the equation of motion at time (t +

At). For MDOF systems implicit schemes require the solution of a set of

simultaneous linear equations, whereas explicit schemes involve the solution
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Table 1

Step-by-Step Algorithms Used in Structural Dynamics

Family of
Structural Example
Dynamics of Stability Order of

Algorithm Type  Condition Accuracy

collocation Wilson-e Implicit unconditional O(At)2

methods for >1.366

Newmark- Average acceleration Implicit unconditional* O(At)2

methods (trapezoidal rule)

Linear acceleration Implicit conditional O(At)2

Fox-Goodwin formula Implicit conditional O(At)2

Central difference Explicit conditional O(At)2*

Houbolt's Implicit unconditional O(At)2

method

a-method Hilber-Hughes-Taylor Implicit unconditional* O(At)2

Wood-Bossak-
Zienkiewicz Implicit unconditional* O(At) 2

#1-method Hoff-Pahl Implicit unconditional* O(At)2

beta-m
method Katona-Zienkiewicz Implicit unconditional* O(At)2

* For select values of constants used in algorithm.

of a set of linear equations, each of which involves a single unknown. Both

implicit and explicit step-by-step algorithms are listed in Table 1. Implicit

algorithms are the more popular of the two types of numerical methods in

earthquake engineering problems because of the larger size time step that may

be used in the analysis. However, implicit methods involve considerable com-

putational effort at each time step compared to explicit methods since the

coefficient matrices for MDOF systems must be formulated, stored, and manipu-

lated using matrix solution procedures.

27



Linear Acceleration Method

32. The principles common to all step-by-step time integration solu-

tions of the equations of motions are illustrated for the Figure 10 SDOF sys-

tem by applying the linear acceleration algorithm to this problem for a single

time interval At. The dynamic response of the mass to an earthquake time

history at each time step is expressed in terms of the values for the dis-

placement, the velocity, and the acceleration of the mass.

33. The linear acceleration algorithm, one of the simpler forms of the

Newmark- family of implicit algorithms, assumes a linear variation in

acceleration of the mass from time t to time (t + At) as shown in Figure 11.

The values for the three variables are known at time t, and the values are

unknown at time (t + At).

34. The assumed linear variation in acceleration provides one of the

four equations used in the linear acceleration algorithm. The slope is

expressed in terms of the values of acceleration at time t and time (t + At),

as listed in Figure 11. Two additional equations are provided by twice inte-

grating the linear acceleration relationship from time t to time (t + At).

This results in a quadratic variation in velocity of the mass over time step

At and a cubic variation in displacements of the mass over time At (Fig-

ure 11). The fourth equation is given by the equation of motion at time (t +

At).

35. Figure 12 summarizes the three steps when solving for the dynamic

response of the mass at each new time (t + At). The three relationships shown

in this figure were obtained by rearranging the four relationships listed in

Figure 10. The first stage of the analysis involves the application of the

step-by-step procedure of analysis during the time of earthquake shaking,

computing the time histories of response for the mass. Due to the nature of

the formulation, the computed acceleration time history is the relative

acceleration of the mass. The total acceleration of mass is equal to the sum

of the relative acceleration values computed at each time step, and the corre-

sponding ground acceleration values (step 2 in Figure 10).

Time Step

36. The selection of the size of the time step At to be used in the

step-by-step calculation of the dynamic response of the SDOF (and of MDOF
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Figure 11. Step-by-step time integration solution of the equation of
motion using the linear acceleration method
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LHS (unknown) = RM (known)

step 1, solve constantuX, XC.At = constantAs

step 2, solve for xt:At = [-t-x,-A, - term.

step 3, solve for At= [ t - term2

where the constants are given by

constant~ k + c + [ mA)2

constant,. = P+t + c" term, + mterm2

and

PtCA* = - M rou.d(t + At)

term1 = txt + 2 * + 2

term2  6 x~ + -±--I Y* + 2 1,

Figure 12. Solution for the dynamic response of the mass at time
(t + At) using the linear acceleration algorithm
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semidiscrete structural models) is restricted by stability and accuracy con-

siderations. The primary requirement of a numerical algorithm is that the

computed response converge to the exact response as At - 0 (Hughes 1987). The

stability and accuracy criteria are expressed in terms of a maximum allowable

size for the time step, Atcritical, which differs among the various numerical

algorithms.

Stability

37. The stability condition requirements for numerical algorithms are

categorized as either unconditional or conditional (Table 1). Bathe and

Wilson (1976), Bathe (1982), and Hughes (1987) describe an integration method

as unconditionally stable if the numerical solution for any initial value

problem (e.g. Figure 5a) does not grow without bound for any time step At,

especially if the time step is large. The method is conditionally stable if

the previous statement is true only for those cases in which At is less than

some critical time step Atcritical. The stability criterion for a numerical

algorithm is established by the values assigned to the constants that are used

in the algorithm and the terms associated with the structural model (Hughes

and Belytshko 1983, Hughes 1987, and Dokainish and Subbaraj 1989). For

example, numerical stability considerations for the linear acceleration method

require that the time step At of a SDOF system be restricted to values given

by the relationship

At 5 A tcltIC& (29)

where

L2 I - 1 = T 4 (30)A tcritical = f -1 __VN(0
W X f 79 it

The values of Atcritical are summarized in Hughes and Belytshko (1983), Hughes

(1987), and Dokainish and Subbaraj (1989) for other algorithms.

38. The attributes of a stable numerical analysis are illustrated using

the free vibration problem of an undamped SDOF system shown in Figure 13,

given an initial displacement x. and an initial velocity *0. With no damping,

the exact solution for this initial value problem is a harmonic function that
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(a) Stable free vibration response with a smaller time

step than the critical time step
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z

•X0
U
U time

(b) Unstable free vibration response due to a larger time

step than the critical time step

Figure 13. Example of unstable response for an undamped

SDOF system in free vibration
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is continuous with time and equal to the sum of a sine wave plus a cosine wave

of constant maximum amplitude. Figure 13a shows a conditionally stable numer-

ical solution that corresponds to the exact solution. Figure 13a results

contrast with Figure 13b results for the unstable free vibration response

computed using At > Atcritical, in which the maximum computed amplitude of the

SDOF system increases with time.

39. The value of Atcritir.1 for MDOF systems is governed by the smallest

period or the largest frequency of the semidiscrete MDOF model. Violation of

the stability criterion by an even single mode will destabilize the numerical

solution of the dynamic problem. To avoid this restriction and increase the

time step size, unconditionally stable integration methods are used.

Accuracy

40. The accuracy of a numerical algorithm is associated with the rate

of convergence of the computed response to the exact response as At - 0

(Hughes 1987). For the dynamic analysis of MDOF semidiscrete structural

models using the finite element method, the accuracy of an algorithm is also

concerned with the question of the computed response of spurious higher (fre-

quency) modes of the semidiscrete model of the structural system. In general,

accuracy considerations require a smaller time step for implicit algorithms,

as compared to the stability requirements. For explicit methods, stability

requirements usually dictate the maximum time step size.

41. Bathe and Wilson (1976) describe one approach used to assess the

accuracy of numerical algorithm. Illustrated in Figure 14 is a free vibration

problem of an undamped SDOF system subjected to an initial displacement x. and

an initial velociiy.x Figure 14a shows the exact solution to be harmonic with

constant maximum amplitude. Figure 14b illustrates results for the free

vibration response computed using a numerical algorithm. The errors in Figure

14b computed results take the form of amplitude decay with time and period

elongation with time, as described in Figure 14c. The order of accuracy of

numerical algorithms listed in Table 1 varies in proportion to the square of

the time step used in the calculations.

42. One approach for selecting the value for the time step to be used

in the calculations is to require a prescribed level of accuracy for the com-

puted results. This decision process may be assisted by referring to charts

developed for simplified SDOF system problems which define the magnitude of
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Figure 14. Example of inaccurate response for an undamped
SDOF system in free vibration
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the errors of an algorithm (i.e. amplitude decay and period elongation) as a

function of the time step size At used in the calculation and the natural

period T of the numerical model. Examples of these types of error plots for

select algorithms are shown in Figure 9.3 of Bathe and Wilson (1976) and in

Figures 9.3.2 and 9.3.3 of Hughes (1987). This decision for a complex MDOF

semidiscrete finite element model will depend upon the highest (mode) fre-

quency of engineering interest for the structural system (see Chapter 9 of

Hughes 1987).
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PART VI: RESPONSE SPEC- SM FOR A DAMPED SDOF SYSTEM

43. This part describes the construction of response spectra which are

graphs of the maximum values of acceleration, velocity, and/or displacement

response of an infinite series of damped elastic SDOF systems (Figure 10)

subjected to an acceleration time history kgroud(t). These maximum response

values for several levels of damping are plotted against undamped natural

period (units of seconds) or plotted against undamped natural cyclic frequency

of vibration (units of hertz or cycles/sec).

Ground Acceleration Time History

44. Figure 15 earthquake accelerogram will be used as the ground motion

in this example. It is the South 00 degrees East (SOOE) horizontal component

recorded at the El Centro site in Southern California during the Imperial

Valley Earthquake of 18 May 1940 (Richter magnitude - 6.7). The recording

station is founded on alluvium. The peak ground acceleration is equal to

341.7 cm/sec/sec (0.35 g) at 2.12 sec into ground shaking. The ground

velocity and displacement curves were obtained by double integration of the

acceleration time history. The peak velocity and peak displacement of the

ground occur at 2.19 sec and 8.7 sec, respectively. It is typical for the

three peak values to occur at different times during earthquake shaking.

45. Figure 15 accelerogram started out as an analog trace recorded by a

strong motion accelerograph. The acceleration trace ';as digitized and fil-

tered in order to control errors, with baseline and transducer corrections

applied to the accelerogram. Further details regarding the development of a

corrected accelerogram are described in Hudson (1979). The California Insti-

tute of Technology (Cal Tech) has a strong motion data program that develops

corrected accelerograms defined at 0.02 sec time intervals. The corrected

accelerograms are often referred to as the Cal Tech Volume II corrected

accelerograms.

Response Spectrum

46. A response spectrum is a graphical relationship of maximum values

of acceleration, velocity, and/or displacement response of an infinite series

of linear SDOF systems with constant damping ratio 0 shaken by the same
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Figure 15. Ground acceleration and integrated ground velocity and
displacement time histories, 1940 El Centro SOOE component, from

Hudson (1979)

Figure 15 acceleration time history in this example. Each Figure 10 SDOF sys-

tem is distinguished by the value selected for its undamped natural period of

vibration I (Equation 13) or equivalently, its undamped natural cyclic fre-

quency of vibration f (Equation 14). In the following example P is

arbitrarily set equal to 0.02.

Peak Response Values for Each SDOF System

47. The construction of the response spectrum plots a succession of

SDOF systems with fundamental periods T ranging from near zero to values of

several seconds. For each SDOF system of value T, the dynamic response is

computed using one of the numerical procedures listed in Table 1. The dynamic

response of Figure 10 SDOF system is expressed in terms of either the relative
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response or the total response of the SDOF system. Response Spectrum values

are the maximum response values for each of the five types of SDOF responses

for a system of period T and damping P, as described in Table 2. The value

assigned to each of the five dynamic response terms for a SDOF system is the

peak response value computed during earthquake shaking.

Relative Displacement Response Spectrum

48. The relative displacement response spectrum, SD or SD, for Fig-

ure 15 ground motion is shown in Figure 16, computed for T ranging in value

from 0 sec to 3 sec and using P - 0.02. This figure displays the maximum

absolute relative displacement value, I x(t) Imax' for each of the SDOF sys-

tems analyzed, as illustrated by the three plots showing the relative dis-

placement time histories x(t) that were computed using a numerical procedure

for the SDOF systems having T equal to 0.5 sec, 1.0 sec, and 2.0 sec,

respectively.

S= X(t) Imx (31)

The SD values for the three SDOF systems are listed in Table 3.

49. A characteristic of relative displacement response spectra is the

absence of relative movement between the SDOF system and the ground during

earthquake shaking for approximately zero values of T (Figure 16). This is

due to the fact that the spring stiffness of a short period, high frequency,

SDOF system (refer to the equation for T in Table 2) is so large that it

neither stretches nor compresses during ground shaking. At the other extreme,

as the value of the spring stiffness is softened (k - 0) and the value for T

is greater than 20 sec, the value for SD approaches the maximum ground dis-

placement (not shown in Figure 16).

Spectral Pseudo-Velocity

50. The spectral pseudo-velocity, Sv or PSV, of the ground motion

Xsround(t) is computed using

SV S D = 2x SD (32)
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Table 2

Definition of Earthquake Response Spectrum Terms

Symbols Definition Description

SD - SD I X(t) I.. Relative displacement response spectrum
or spectral displacement

SV ixt) max Relative velocity response spectrum

SA I Xtotal(t) Im Absolute acceleration response spectrum

Sv - PSV W SD -W SD  Spectral pseudo-velocity

4 2

SA - PSA W2 SD - T2 SD Spectral pseudo-acceleration

w is the circular frequency of vibration of the undamped SDOF systmi in units
of radians per second.

T is the natural (or fundamental) period of vibration of the undamped SDOF
system in units of seconds.

T = 2 n.FT

for each of the SDOF systems analyzed. Sv is distinguished from the relative

velocity response spectrum SV, to be described in a subsequent paragraph. Sv

for Figure 15 ground motion shown in Figure 17b was computed using Equation 32

for each T ranging in value from 0 to 3 sec (at closely spaced intervals) in

the figure (P - 0.02). For example, with SD - 2.48 inches for the T - 0.5 sec

(w - 12.566 radians/sec) SDOF system, Sv - 31.16 inch/sec by Equation 32, and

identified in Figure 17b. The values of Sv for the T - 1.0 sec and T -

2.0 sec SDOF systems are listed in Table 3.

51. The term Sv is related to the maximum strain energy stored within

the linear spring portion of the SDOF system when the damping force is

neglected,
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Table 3

Response Spectral Values for Three SDOF Systems

with 6 - 0.02, 1940 El Centro S00E Component

T W SD Sv SA
(sec) (radians/sec) (inch) (inch/sec) (inch/sec/sec)

0.5 12.566 2.48 31.16 391.62 1.014

1.0 6.283 6.61 41.53 260.95 0.676

2.0 3.142 8.84 27.77 87.25 0.226

w is the circular frequency of vibration of the undamped SDOF system

2%
T

where T is the natural (or fundamental) period of vibration of the undamped
SDOF system.

The spectral pseudo-velocity, Sv - W SD

The spectral pseudo-acceleration, SA -2 SD

1 g - 386.08858 inch/sec/sec

Energy~x k D m S (33)

Relative Velocity Response Spectrum

52. The relative velocity response spectrum SV is the maximum absolute

value of the computed relative velocity time history (from step 1 of Fig-

ure 10) for the SDOF system.

SV= I (t) l (34)

As the value of the period T approaches infinity (i.e. long period SDOF

systems), the value for SV approaches the maximum ground velocity

I Xground(t) Imax"
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Figure 17. Displacement, pseudo-velocity
pseudo-acceleration linear response
spectra plots, P - 0.02, 1940 El Centro

SOOE component, from Chopra (1981)

Comparison of SV and SV Values

53. The pseudo-velocity value Sv for a SDOF system of period T is not

equivalent to the relative velocity value SV, as shown using expressions

derived for Sv and SV in Appendix A and expressed in terms of the Duhamel's

Integral. However, for a limited range of periods, the value for Sv is an

approximation to the SV value, with the differences between the values

increasing with increasing values for period T. Specifically, for short

periods (i.e. high frequencies) the values for Sv are nearly the same as the
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values for SV. For long periods or low frequencies, the differences in the

values for SV and SV can be significant.

Spectral Pseudo-Acceleration

54. The spectral pseudo-acceleration, SA or PSA, of the ground motion

Xsroud(t) is computed using either

_2x

A S V - sv (35)

or

SA 2 SD = _ SD (36)

for each of the SDOF systems analyzed. SA is distinguished from the absolute

acceleration response spectrum SA to be described in a subsequent paragraph.

SA for Figure 15 ground motion, shown in Figure 17c was computed using either

Equation 35 or Equation 36 for each T ranging in value from 0 to 3 sec in the

figure (P - 0.02%). For example, with SD - 2.48 inches for the T - 0.5 sec

(w - 12.566 radians/sec) SDOF system, SA - 391.62 inch/sec/sec (1.014 g) by

Equation 36 and identified in Figure 17c. The values of SA for the T -

1.0 sec and T - 2.0 sec SDOF systems are listed in Table 3. The force com-

puted as the product of the mass m times SA is a good approximation to the

maximum force in the spring.

Absolute Acceleration Response Spectrum

55. The absolute acceleration response spectrum SA is the maximum abso-

lute value of the sum of the computed relative acceleration time history for

the SDOF system plus the ground acceleration time history (from step 2 in

Figure 10).

SA = ktotai(t) Imx = i R 0 ,(t) + k( t) Imx (37)
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Comparison of SA and SA Values

56. The pseudo-acceleration value SA for a SDOF system of period T is

equal to the absolute acceleration value SA when P - 0 (refer to Appendix A).

For the low levels of damping common to structural dynamics problems, the

values for SA and SA are nearly equal over the period range of interest.

57. For short period, high frequency, stiff SDOF systems (T < 0.05

sec), the values for SA and SA are equal to the peak ground acceleration

I :kground(t) Imax, as shown in Figure 18. As the period T approaches infinity

(i.e. massive SDOF systems), the values for SA and SA approach zero (not shown

in Figure 18).

Tripartite Response Spectra Plot

58. A tripartite response spectrum plot is a logarithmic plot of the

three SDOF response quantities SD, Sv, and SA as a funrtio- rf -he undamped

fundamental period T in units of seconds (or cyclic frequency f in units of

hertz). The tripartite response spectrum plot for Figure 15 ground motion is

shown in Figure 19, with the response spectrum values computed for each T

ranging in value from 0.04 to 3 sec in the figure (f6 - 0.02). The plot uses

four logarithmic scales: the period T along the abscissa, Sv along the

ordinate, SA along an axis oriented at 45 deg counterclockwise from hori-

zontal, and SD along an axis oriented at 45 deg clockwise from horizontal.

The response quantities SD - 2.48 inches, Sv - 31.16 inch/sec, and SA -

1.014 g for the T - 0.5 sec SDOF system identified in Figure 19.

59. Figure 19 tripartite response spectrum plot has the advantage of

condensing the information presented using three plots in Figure 17 onto a

single plot because of the interrelationships between the three terms (refer

to Equations 32, 35, and 36).

60. The tripartite response spectrum plot for the 1940 El Centro ground

motion (Figure 15) in Figure 20 shows the response spectrum values for levels

of damping, f - 0, 0.02, 0.05, 0.1 and 0.2. This figure illustrates the trend

common to all ground motions of increased values for SD, Sv , and SA with lower

damping levels.
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Figure 18. Pseudo-acceleration and absolute acceleration linear response

spectrum plots

Fundamental Periods at Which the Maximum Values for

SA ' SV , and SD are Computed

61. For the 1940 El Centro ground motion, the largest value of SA equal

to 1.29 g (1,265 cm/sec/sec), for an SDOF system with T equal to 0.47 sec (f -

2.13 Hz) and P - 0.02 (refer to Figure 17 or Figures 19 and 20). This value

is 3.7 times larger than the peak acceleration value of 0.35 g (341.7 cm/sec/

sec) of the accelerogram (Figure 15). The largest value for Sv, equal to
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Figure 20. Tripartite logarithmic plot of response spectrum, / 0,
0.02, 0.05, 0.1, and 0.2, 1940 El Centro SOOE Component, from

Chopra (1981)

45.7 in./sec (18 cm/sec), is computed for a value of T equal to 0.84 sec (f =

1.19 Hz). The largest value for SD, equal to 18 in. (7.09 cm), is computed

for a value of T equal to 10.5 sec (f = 0.095 Hz) (Figure 20). The order of

increasing T values (seconds) with the peak values of SA, Sv, and SD is typi-

cal of response spectra for ground motions. The order of spectral values is

reversed when the SDOF system is described in terms of increasing values of

cyclic frequency f (Hz) (Equation 14).
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Freguencv Regions of the Tripartite Response Spectra

62. Although quite irregular with local peaks and spikes, the 1940 El

Centro earthquake motion tripartite response spectrum has the general shape of

a trapezoid or tent (refer to Figure 20). This general shape implies three

distinct regions with regards to the frequency content of the 1940 El Centro

earthquake motion.

63. Within the short period range of 1/8 sec < T < 1/2 sec or

equivalently, the high frequency range of 2 Hz < f < 8 Hz, SA is nearly con-

stant (an average value of 0.95 g (931.6 cm/sec/sec) with a variation equal to

± 25%), as compared to the variation in Sv and SD values (Figure 19).

64. There are two distinct subregions within the intermediate period

range of the 1940 El Centro motion response spectra shown in Figure 19. The

first subregion is within the period range of 1/2 sec < T < 1 sec (1 Hz < f <

2 Hz), with Sv a nearly constant 38 in/sec (15 cm/sec) value (± 20%), as com-

pared to the variation in SA and SD values. Between 1 sec < T < 3 sec (or

0.33 Hz < f < 1 Hz), Sv is nearly a constant 28 in./sec (11 cm/sec) value

(± 25%).

65. The long period range, T greater than 3 sec (the low frequency

range of f < 0.33 Hz), SD averages 13 in (5.1 cm) for P - 0.02, with a varia-

tion equal to ± 40% (Figure 20). For this accelerogram, the variation in the

average value of SD is greater than the variations in the SA and Sv values for

the short and intermediate period ranges, respectively.

Design Response Spectra

66. The previously described trends in the spectral content with fre-

quency of earthquake accelerograms were recognized in the 1970's by numerous

earthquake engineers and seismologists. Statistical analyses of response

spectra of earthquake motions were conducted by several groups with the

objectives of identifying the factors affecting the response spectra for

earthquake motions, characterizing shape or the frequency content of the

earthquake spectrum for the category under study and developing smooth, broad

band spectrum for use in the design of structures for earthquake loadings. A

broad band spectrum ensures that sufficient seismic energy is delivered to all

frequencies.
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67. The results of some of the early ground motion studies are summa-

rized in Seed, Ugas, and Lysmer (1976), Mohraz (1976), and Newmark and Hall

(1982). Their results show that the spectra frequency content of the recorded

accelerograms are dependent upon the earthquake magnitude, distance from

causative fault to site, the type of substratum on which the recording station

is founded (i.e., rock, shallow alluvium, or deep alluvium), and the tectonic

environment. Using standard regression techniques for selected ground motion

categories, (smooth) trends in the variation in spectral content with

frequency were quantitatively identified, as well as their variation about

their median values, expressed in terms of a standard deviation.

Newmark and Hall Design Response Spectrum

68. The Newmark and Hall (1982) design response spectrum exemplifies

the important features common to current procedures used to characterize the

spectral content of earthquake motions. A Newmark and Hall tripartite design

response spectrum for a moderate earthquake at a competent soil site corre-

sponds to the solid line shown in Figure 21 for P - 0.05. The peak ground

acceleration, peak ground velocity, and peak ground displacement used in this

example and included for reference in this figure (dashed line), are 0.5 g

(490.3 cm/sec/sec), 61 cm/sec, and 45 cm, respectively. The spectral values

are plotted as a function of the frequency f (Hz), rather than period T as

Figures 19 and 20. The Newmark and Hall design response spectrum is a smooth,

broad band spectrum composed of three distinct regions of constant, limiting

spectral values for SA, Sv, and SD, as identified in the figure. These spec-

tral amplitude values correspond to one standard deviation above the median

spectral values (84.1 % cumulative probability). Mean spectral values are

presented in the Newmark and Hall (1982) publication as well. A smooth, broad

band spectrum ensures that sufficient seismic energy is delivered to all fre-

quencies in a dynamic analysis of a MDOF semidiscrete structural model. For

details regarding the construction of the Newmark and Hall design response

spectrum, consult their 1982 EERI monograph.

Response Spectrum in the Dynamic Analysis of MDOF Structural Models

69. The response spectrum is used to represent the seismic loading in

the dynamic analysis of MDOF semidiscrete structural models. For details
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Figure 21. Newmark and Hall elastic design response
spectrum, from Newmark and Hall (1982)

regarding its application in structural dynamic problems, the reader is

referred to textbooks such as Clough and Penzien (1975), Chopra (1981), or Paz

(1985).
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APPENDIX A: SOLUTIONS FOR SPECTRAL TERMS BASED UPON DUHAMEL'S
INTEGRAL SOLUTION FOR RELATIVE DISPLACEMENT

1. This appendix describes the derivation of relationships for each of

the five response spectrum terms SD, SV, SV, SA, and SA (Table 2), expressed

in terms of Duhamel's integral. The resulting relationships show that the

terms Sv and SV are not equivalent, while the terms SA and SA are equivalent

only if - 0.

Duhamel's Integral Solution for Relative Displacement

2. The relative displacement of the SDOF system was described in Part

IV involving Duhamel's integral. The derivation of x(t) (Equation 22)

involved the representation of the load time history P(t) - - mxground as a

series of loadings P(r)- - mg8 roud applied to the SDOF system for short dura-

tion time intervals dr. The resulting relationship for a damped SDOF system

is given as

X(t) = --- kground(r) e -P(t ' ) sin [isD(t- )] d'r (Al)WD 0

where

wD - the damped angular frequency of vibration (Equation 16)

w the undamped angular frequency of vibration (Equation 11)

= the fraction of critical damping (Equation 12).

Relative Displacement Response Spectrum SD

Expressed in Terms of Duhamel's Integral

3. The relative displacement response spectrum SD is equal to the maxi-

mum absolute relative displacement value I x(t) Imax (Equation 25) for a

damped SDOF system of period T. Introducing Equation Al for the relatiN,_

displacement x(t), SD becomes

SD= - ft Xground() e ") (t -t3 sin [AD(t - i) dT (A2)
0 Max

Al



Spectral Pseudo-Velocity SV Expressed In Terms of Duhamel's Integral

4. Sv may be expressed in terms of Duhamel's integral by introducing

the Duhamel's integral solution for SD into Equation 26, resulting in the

relationship for Sv is given by

Sv = _ 2- ft kgr°ud( ) e-u (-) sin [w.(t - 0)] d (A3)
W D f (3

For an undamped SDOF system (f - 0), this expression simplifies to

SV = - t :kgy0 nd() sin Wa(t - -) d (A4)
0 IMa"

Relative Velocity Response Spectrum SV Expressed

in Terms of Duhamel's Integral

5. The relative velocity response spectrum SV is equal to the maximum

absolute relative velocity value I i(t) Im (Equation 28) for a damped SDOF

system of period T. Differentiating Duhamel's integral solution for relative

displacement (Equation Al) with respect to time results in an expression for

k(t), with SV equal to the maximum absolute value of the resulting expression.

- f go d() e -  c st -  S [ t )1 d )

sv= 0 (A5)
+ ft Rgrond(T) e -P(t - ' sin [oD(t - 0) d

F,-1 0 mx

Refer to page 62 of Hudson (1979) or section 1.5 of Newmark and Rosenbluth

(1971)*. For an undamped SDOF system (P - 0) Equation A5 becomes

SV = - If ground(t) COS [a(t - -)1 dc (A6)
0 1mX

* References cited in this appendix are included in the References at the end
of the main text.

A2



Comparison of Spectral Pseudo-Velocity and Relative Velocity

Response Spectrum Relationships

6. Comparison of the expressions for Sv (Equation A3) and SV

(Equation A5) in the previous two paragraphs demonstrates the difference

between the two terms. The simplified relationships for an undamped SDOF

system (P - 0) shows the terms for Sv (Equation A4) and SV (Equation A6) dif-

fer by the trigonometric function used within Duhamel's integral.

Spectral Pseudo-Acceleration SA Expressed in

Terms of Duhamel's Integral

7. SA may be expressed in terms of Duhamel's integral by introducing

the Duhamel's integral solution for SD into Equation 30, resulting in the

relationship for SA given by

SA =l e--!(g-d ) sin ['wD(C - r)1 I (A7)

For an undamped SDOF system (f - 0), this expression simplifies to

SA - ) ft gounJd(T) sin ([(t - 01] dr (A8)
0 max

Absolute Acceleration Response Spectrum in

Terms of Duhamel's Integral

8. The absolute acceleration response spectrum SA is the maximum

absolute value of the sum of the computed relative acceleration time history

for the SDOF system plus the ground acceleration time history.

SA = Iktot (t) I 1 x = I *qoroud(t) + :(t) Imax (A9)

To introduce Duhamel's integral solution for relative displacement into this

relationship, ktota,(t) is expressed in terms of the relative velocity and

A3



relative displacement of the SDOF system. Rearranging the dynamic equilibrium

Equation 21 and introducing

Atotal =ground + (AlO)

results in the relationship

rot, 2 (-2X  (All)

Introducing Equation Al and the term within the absolute value in Equation A5

into Equation All, results in the relationship

2 (o)ft t9.d .) e-Pu~t -) coosw~ - r) I I
SA= 0 (A12)

+((1 - 2p2) f rgroud (T) e-P(c-) sin [%D(t - t

Refer to page 63 of Hudson (1979) or section 1.5 of Newmark and Rosenbluth

(1971). For an undamped SDOF system (P - 0) Equation A12 becomes

SA =I- w ft ound(-) sin [w(t- 01 (A13)
0 ma

Comparison of Spectral Pseudo-Acceleration and Absolute

Acceleration Response Spectrum Relationships

9. Comparison of the expressions for SA (Equation A7) and SA (Equa-

tion A12) in the previous two paragraphs demonstrates the difference between

the two terms. However, the simplified relationships for an undamped SDOF

system (6 - 0) for SA (Equation A8) and SA (Equation A13) are the same.
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